

Faire avancer la sûreté nucléaire

Neutron clustering: from Blaise Pascal's ruin theory to the Reactor Critical Facility at RPI

E. Dumonteil on behalf of the LANL-IRSN collaboration (R. M. Bahran, J. Hutchinson, W. Monange, N. Thompson, ...)

IRSN PSN-EXP/SNC, France

LANL Advanced Nuclear Technology Group, USA

Contact: eric.dumonteil@irsn.fr

NCSP TPR Meeting
March 2018

Foreword on the gambler's ruin

Blaise Pascal (1623-1662) mathematician & philosopher

Letter (1656)

"what happens if I have \$1000 at hand and I play a fair game (p=0.5 to win loose) betting \$1 at each trial?"

Pierre de Fermat (1605-1665) mathematician & magistrate

Outline

Part 1. Initial motivation: tilts in Monte Carlo criticality simulations

Part 2. Beyond the Boltzmann critical equation: stochastic modeling of spatial correlations

Part 3. Consequences on eigenvalue calculations: traveling waves & clustering

Part 4. Consequences on experimental reactor physics: measuring spatial correlations at RCF

Outline

Part 1. Initial motivation: tilts in Monte Carlo criticality simulations

Part 2. Beyond the Boltzmann critical equation: stochastic modeling of spatial correlations

Part 3. Consequences on eigenvalue calculations: traveling waves & clustering

Part 4. Consequences on experimental reactor physics: measuring spatial correlations at RCF

Initial motivation: numerical tilts?

Power tilt in the Monte-Carlo simulation of large reactor cores:

Long standing issue (70's): dedicated publications, expert groups, ... Strong under-estimation of error bars develop

=> problem for criticality-safety assessment!

If we look closer ...

 $\phi(\mathbf{x},n)$ is the "space-time" flux in a pincell

Instead of looking at integrated tallies, can we consider instantaneous tallies?

Strong spatial correlations develop for loosely coupled systems

"neutron clustering"

Outline

Part 1. Initial motivation: tilts in Monte Carlo criticality simulations

Part 2. Beyond the Boltzmann critical equation: stochastic modeling of spatial correlations

Part 3. Consequences on eigenvalue calculations: traveling waves & clustering

Part 4. Consequences on experimental reactor physics: measuring spatial correlations at RCF

Clustering in mathematics and in biology

clustering in theoretical ecology

[Dawson, 1972] [Cox and Griffeath, 1985]

clustering in biology (where it is aka brownian bugs):

- plankton are any organisms that live in the water column and are incapable of swimming against a current
- they reproduce, die and are transported by the water (like neutrons!)

[Young, Nature 2001] [Houchmandzadeh, PRE 2008]

□ tools to describe clustering in physics: statistical mechanics, in particular Branching Brownian Motion (BBM)

Neutron clustering

- ☐ TRIPOLI-4®
- Exponential flights with
- □ typical jump size $1/\Sigma_s \rightarrow 0$
- to recover the diffusion regime
- **☐** Binary branching

$$p(0) = \frac{1}{2}$$
 $p(2) = \frac{1}{2}$

- \Box Dimension d=3
- \Box Typical length L >> l

Can we have a quantitative insight into this phenomenon?

Branching Brownian motion

simplified model for neutron transport in multiplicative media:

- $ightharpoonup N_0
 ightharpoonup \infty$ neutrons, uniformly distributed at t=0
- \square infinite medium $(L \rightarrow \infty)$
- ☐ no energy dependence
- \square Brownian motion with diffusion coefficient D [cm².s⁻¹]
- \square undergoes collision at Poissonian times with rate λ [s⁻¹]
- \Box at each collision, k descendants with probability $p(k) \longrightarrow p(0) \leftrightarrow \Sigma_c$
- ☐ dimension d

this process couples:

- ⇒ Galton-Watson birth-death process to describe fission and absorption
- ⇒ Brownian motion to simulate neutron transport

Crash course for clustering in dimension 0

- $lue{}$ We consider a "cell" i at time t with n individuals
- □ d=0 Branching events with:
 - \triangleright production rate $\lambda p(2)$
 - \triangleright disparition rate $\lambda p(0)$
- □ Proba(n→n+1 in dt): $W^+(n)dt = \lambda p(2)ndt$
- □ Proba(n→n-1 in dt): $W^-(n)dt = \lambda p(0)ndt$

$$\lambda p(0), \lambda p(2)[s^-1]$$

 $n \ [\#]$

dt [s]

Forward master equation

$$\frac{dP(n,t)}{dt} = \frac{W^{-}(n+1)P(n+1,t)}{+W^{+}(n-1)P(n-1,t)} - \frac{W^{+}(n)P(n,t)}{-W^{-}(n)P(n,t)}$$

$$\langle n(t) \rangle = \sum_{n} nP(n,t)$$

$$\langle n^{2}(t) \rangle = \sum_{n} n^{2}P(n,t)$$

Critical: $\lambda p(0) = \lambda p(2)$ $\langle n(t) \rangle = n_0$ $< V(t) >= \lambda n_0 t$ $< n(t) > = n_0 e^{\lambda(p(2) - p(0))t}$ $< V(t) > = < n^{2}(t) > - < n(t) >^{2} = \lambda(p(0) + p(2))n_{0}t$

From gambler's ruin to critical catastrophy...

Ultimate fate of this population? Controlled by $v_1 = \sum_k kp(k)$ (mean number of part/collision)

 $\begin{array}{cccc}
\nu_1 &>& 1 & \text{population grows unbounded} \\
\nu_1 &<& 1 & \text{population becomes extinct} \\
\nu_1 &=& 1 & \text{population constant on} \\
&&& \text{average: critical condition}
\end{array}$

N neutrons in a critical spatial cell which undergo fission or capture events

N \$1 coins in a box which are played in a fair game

Fair game in neutron transport = criticality Gambler's ruin = critical catastrophe!

... and from critical catastrophy to neutron clustering

From d=0 to d=2

d=0 => Critical castastrophy Gambler's ruin

d>0 => Neutron clustering

but here the cells where totally decoupled "fake" d=2

We have to take into account the diffusion of neutrons

STOCHASTIC MODELING & THEORY

No 1-dimensional nuclear reactor

All those equations model the neutron transport in fissile medium (not only the criticality mode of MC codes)

The solution to the 2-points function when dimension d = 1 or d = 2 diverges with time...

$$\langle M \rangle = \bigcirc$$

...a purely 1d infinite system systematicaly develops power peaks at arbitrary places!

The typical amplitude of those peaks is controlled by

fission process
$$\frac{\nu_2}{c_0}$$
 different in reactor physics and MC simu

Challenge in MC criticality simulations:

 c_0 << Less than in reality!

Beyond the Boltzmann equation: Feynman-Kac & Master equations

Kac 1914-1984

Ulam 1909-1984

Beyond the Boltzmann equation: Feynman-Kac & Master equations

- ☐ The Boltzmann critical equation calculates mean quantities
- □ The Feynman-Kac path integral approach (backward equations) or Fokker-Planck type equations are equations for the probability => mean + variance/correlations + ...

And surprisingly variance & correlations take the lead over mean statistics!

Advanced modeling

☐ Dimensionality (3d vs. 1d)

- Dumonteil, E. et al, Annals of Nuclear Energy 63, 612-618 (2014)
- ☐ Finite-speed effects (transport vs. diffusion)

Zoia, A. et al, Physical Review E, 90, 042118 (2014)

- ☐ Vacuum boundary conditions (absorbing BC vs. reflecting BC)
- ☐ Delayed neutrons (two time scales vs. single time scale)

Houchmandzadeh et al, Phys. Rev. E 92 (5), 052114 (2015)

☐ Population control (N does not depend on time)

De Mulatier et al, J. Stat. Mech., 15, P08021, 1742-5468 (2015)

☐ Clustering and entropy

Nowak et al, Ann. Nuc. Ener. 94, 856-868 (2015)

☐ Bias modeling

Dumonteil et al, Nuc. Eng. Tech., 10.1016/j.net.2017.07.011 (2017)

☐ Time => generations

Sutton and Mittal, Nuc. Eng. Tech., 10.1016/j.net.2017.07.008 (2017)

Outline

Part 1. Initial motivation: tilts in Monte Carlo criticality simulations

Part 2. Beyond the Boltzmann critical equation: stochastic modeling of spatial correlations

Part 3. Consequences on eigenvalue calculations: traveling waves & clustering

Part 4. Consequences on experimental reactor physics: measuring spatial correlations at RCF

Consequence 3:

under-sampling biases

& clustering

& traveling waves

- □ 1-D BBM with population control
 □ 50 neutrons
- Uniform initial distribution

- ☐ [-L,L] Dirichlet

- ☐ 1-D BBM with population control
- Uniform initial distribution

□ 50 neutrons
□ [-L,L] Dirichlet

Reflection due to N=constant!

IRSN

Population control & traveling waves

$$\partial_t \phi = D\nabla^2 \phi + (\beta - \gamma) \phi + \left(\frac{-\beta + \gamma - D \partial_x \phi(x, t) \big|_{x = \pm L}}{\int_{-L}^{+L} dx \int_{-L}^{+L} dx \phi(x, t)^2} \right) \phi(x, t)^2$$

- lacksquare Non-linear equation with ϕ^2 term
- Can be simplified under some assumptions —

Fisher, Ann. Eugenics 7:353-369 (1937)

$$\partial_t \phi = D\nabla^2 \phi + (\beta - \gamma) \phi (1 - \phi)$$

$$\phi(x,t) = \frac{1}{\left(1 + C \exp^{\pm\frac{1}{6}\sqrt{6(\beta-\gamma)}x - \frac{5}{6}(\beta-\gamma)t}\right)^2} \left| \begin{array}{c} \text{Dumonteil et al, Nuc. Eng. Tech.,} \\ \text{10.1016/j.net.2017.07.011 (2017)} \end{array} \right|$$

- ☐ F-KPP equation with traveling waves solutions
- Counter-reaction depending on the sign of $1-\phi$

Traveling wave & solitons

- ☐ Fux profile => comes from the averaging through time of the cluster displacement
- Connection between clustering & solitons
 - Clustering typical of branching processes
 - Solitons typical of non-linear equations
- Qualitative & Quantitative scheme to explain under-sampling biases on local tallies

Cluster density profile from the

Outline

Part 1. Initial motivation: tilts in Monte Carlo criticality simulations

Part 2. Beyond the Boltzmann critical equation: stochastic modeling of spatial correlations

Part 3. Consequences on eigenvalue calculations: traveling waves & clustering

Part 4. Consequences on experimental reactor physics: measuring spatial correlations at RCF

Is it possible to observe/characterize clustering effects through experiments?

☐ Clustering should be measurable, if certain conditions are gathered:

$$\frac{\tau_D}{\tau_E} \simeq \left(\frac{L^2}{D}\right) / \left(\frac{N}{\lambda}\right) = \frac{1}{N} \frac{L^2}{\ell_m^2} \qquad \qquad \ell_m^2 = \frac{D}{\lambda} \qquad \begin{array}{c} \text{Neutron migration area} \\ \end{array}$$

In 2016, LANL/UMich Performed Subcritical Measurements at the RPI-RCF with LANL Neutron Multiplicity Detectors

- ☐ Two important goals achieved:
 - ✓ established a protocol for subcritical neutron multiplication measurements at a research reactor [1]
 - ✓ did not drown <u>very expensive</u> state-of-the-art LANL multiplicity detectors aka MC-15 detectors (15 He-3 tubes encased in poly)

[1] J. Arthur, R. Bahran, J. Hutchinson, A. Sood, N. Thompson, S. Pozzi "Development of a Research Reactor Protocol for Neutron Multiplication Measurements" to be submitted to Progress of Nuclear Energy (2017)

Is it possible to observe/characterize clustering effects through experiments?

Clustering should be measurable, if certain conditions are gathered:

- ☐ Ideal conditions for an experiment that could characterize clustering?
 - ✓ Zero power reactor
 - ✓ Fresh fuel, no burn-up effects
 - ✓ As big as possible

RCF@RPI

✓ Find a way to do spatial measurements MC15 detectors & He3 tubes

MORET 5 simulations to design the experiment

- MORET 5 code with all Random Noise options activated => dynamic + analog
 - Data library: Endfb71
 - ☐ Fission sampling:
 - ✓ Freya
 - ✓ discrete Zucker and Holden tabulated

 - ✓ Only Spontaneous fissions
- Highly parallel simulations:
 - ☐ Simulated signal = 1000 s (prompt+delayed)
 - Number of independent simulations = 330
 - Number of neutrons per simulation = 2.4 10⁴

Excellent reactivity: Rho = -4 pcm

Up to 10 mW of simulated power!

Final rho

Preliminary results of RCF simulation

□ Ideal scenario@RCF => 1st question: are there spatial correlations in the reactor?
=> 2nd question: if yes, are there measurable?

Simulation of expected signal in the MC15 detectors

Simulation of in-core effects with tallies defined over He3 tubes

Simulation of RCF in-core effects

Simulation of in-core effects with He³ tallies

- ☐ Experimental program should include:
 - ✓ Power scan
 - ✓ PuBe source effects
- □ RCF has the potential to be conclusive regarding the neutron clustering theory!

Simulation of expected signal in the MC15 detectors

Partial conclusions (see N. Thompson's talk!)

- Stochastic modelling is used to characterize the behavior of loosely coupled systems and predicts a:
 - clustering phenomenon...
 - ... obeying traveling waves equations
- Analog Monte Carlo simulations (with MCNP and/or MORET) were used to design such an experiment, using LANL MC15 detectors and the RCF@RPI reactor
- ☐ This experiment happened in August 2017 and showed that....

 see Nick Thompson's talk!
- Nick Thompson is currently working @ LANL and will rejoin IRSN in June to improve the analyses of the data

Thank you!

Clustering theory

A little bit of field theory

- fission event
 - > proba:

$$W^+(\vec{n},i)dt = \lambda p(2)\eta_i \vec{n}dt$$

- \triangleright action on \vec{n} :
- $a_i^+ \vec{n} = (..., n_{i-1}, \boxed{n_i + 1}, n_{i+1}, ...)$
- capture event
 - > proba:
- $W^{-}(\vec{n},i)dt = \lambda p(0)\eta_i \vec{n}dt$
 - > action on \vec{n} : $a_i \vec{n} = (..., n_{i-1}, \frac{n_i 1}{n_i}, n_{i+1}, ...)$
- ☐ migration event
 - > proba:
- $W^{m}(\vec{n}, i-1 \rightarrow i)dt = \lambda p(1)\eta_{i}\vec{n}dt$
- \triangleright action on \vec{n} : $a_i^+ a_{i-1} \vec{n}$

with η_i the number of neutrons in cell i

and
$$\lambda p(1) = D/2l^2$$

Forward master equation

$$\frac{dP(\vec{n},t)}{dt} = \sum_{i} W^{+}(a_{i}\vec{n},i)P(a_{i}\vec{n},t) - W^{+}(\vec{n},i)P(\vec{n},t) - W^{-}(\vec{n},i)P(\vec{n},t) - W^{-}(\vec{n},i)P(\vec{n},t) + W^{m}(a_{i-1}^{+}a_{i}\vec{n},i-1,i)P(a_{i-1}^{+}a_{i}\vec{n},t) - W^{m}(\vec{n},i,i+1)P(\vec{n},t) + W^{m}(a_{i+1}^{+}a_{i}\vec{n},i+1,i)P(a_{i+1}^{+}a_{i}\vec{n},t) - W^{m}(\vec{n},i,i-1)P(\vec{n},t) + W^{m}(a_{i+1}^{+}a_{i}\vec{n},i+1,i)P(a_{i+1}^{+}a_{i}\vec{n},t) - W^{m}(\vec{n},i,i-1)P(\vec{n},t)$$

And a little bit more

As before one can inject in the Master equation the mean number of neutrons in cell k:

$$\langle n_k \rangle = \sum_n n_k P(n_k, t)$$

or its continuous version:

$$c(x) = \lim_{l \to 0} \frac{n_k}{l}$$

And define an appropriate tool to study spatial correlations:

the centered correlations without self-contribution

$$g(x,t) = (\langle c(y)c(y+x) \rangle - c^2 - c\delta(x))/c^2$$

Equation for the 2-points correlation function

The equations obtained stand for any arbitrary dimension d and in the case $v_1 = 1$ can be written:

$$\frac{\partial}{\partial t}c_t(\mathbf{x}) = 0$$

$$\frac{\partial}{\partial t}g_t(r) = 2D\nabla_r^2 g_t(r) + \frac{\lambda v_2}{c_t}\delta(r)$$

d-dimensional Laplacian (diffusion term)

with
$$r = |x - y|$$

and
$$v_2 = \sum_k k(k-1)p(k)$$

auto-correlation term 4 leading to 2^{nd} moment effects (v_2 is the mean number of pairs)

Young, W.R., Roberts, A.J., Stuhne, G., Nature 412, 328 (2001) Houchmandzadeh, B., Phys. Rev. E 66, 052902 (2002) Houchmandzadeh, B., Phys. Rev. Lett. 101, 078103 (2008) Houchmandzadeh, B., Phys. Rev. E 80, 051920 (2009) Dumonteil, E. et al, Annals of Nuclear Energy 63, 612-618 (2014)

Analytical solution to this equation

With initial condition $c_0(\mathbf{x}) = c_0$ the solution to the 1st equation is:

$$c_t(\mathbf{x}) = c_0$$
 (for all t)

And the solution to the 2-points function is, taking dimension d = 3:

$$g_t(r) = \frac{\lambda v_2}{8Dc_0 \pi^{3/2} r} \Gamma\left(\frac{1}{2}, \frac{r^2}{8Dt}\right)$$

where $\Gamma(a,z)$ stands for the incomplete Gamma function

Amplitude
$$\propto \frac{\lambda v_2}{Dc_0}$$

g can be interpreted as the probability to find a neutron next to another

Consequence 1: Convergence criteria

Typical separation between particles: $\ell = \sqrt{\langle r_a^2 \rangle}$

Number of particles to suppress clustering: $N_0 \Rightarrow N_0 \gg (L/\ell)^3$

Let's go back to the pincell test-case: $\ell \simeq 6~{\rm cm}$ and $N=10^4$ (# particles simulated)

				ψ (x ₁ , n)
L = 10 cm	$N_0 \simeq 4$	$N \gg N_0$		
L = 100 cm	$N_0 \simeq 5 \cdot 10^3$	$N \simeq N_0$	──→	y (x ₀ , n)
L = 400 cm	$N_0 \simeq 3 \cdot 10^5$	$N \ll N_0$		ψ (x ₀ ,η)
			•	2

Consequence 2: Diagnostic tool

2-points correlation function versus (r,t) for the 3-d analytical function (i,n) for the TRIPOLI-4® simulation of the pincell (i is the bin number)

« MC criticality simulation » clustering diagnostic tool in TRIPOLI-4®: histogram of inter-collisions distances

- ⇒ very good agreement
- ⇒ saturation of the 2-points estimator in the MC simulation

Traveling waves

OECD/NEA R1 Benchmark

- Expert Group on Advanced Monte-Carlo Techniques @ OECD/NEA
- R1 Benchmark = ¼ PWR-type reactor core
- ☐ Designed to understand biases on local tallies estimates (+uncertainties)

MORET Simulation of the R1 benchmark

Fluxes (10⁴ active cycles of 10⁴ neutrons)

Fluxes (10⁶ active cycles of 10² neutrons)
Fluxes (10² active cycles of 10⁶ neutrons)

Under-estimation inside the core, over-estimation for the outer assemblies

1-D binary branching Brownian motion

- ☐ Uniform material, mono-energy, leakage bc
- \square Brownian motion with diffusion coefficient **D** [cm2.s-1]
- $lue{}$ undergoes collision at Poissonian times with rate $eta+\gamma+\lambda$ [s-1]
- \square at each collision, k descendants with probability p(k)
- □ total number of particles N kept constant

 \Rightarrow $< x^2(t) >= Dt$

Population control algo. to keep N constant

Branching Brownian motion with population control couples:

- ⇒ Galton-Watson birth-death process to describe fission and absorption
- ⇒ Brownian motion to simulate neutron transport
- ⇒ Population control that reproduces the end of cycle renormalization of MC criticality codes

- □ 1-D BBM with population control
 □ 50 neutrons
- Uniform initial distribution

- ☐ [-L,L] Dirichlet

- ☐ 1-D BBM with population control
- Uniform initial distribution

□ 50 neutrons□ [-L,L] Dirichlet

Reflection due to N=constant!

How do these processes average through time?

From strongest to lousiest coupled systems

Diffusion equation with population control

- Monte-Carlo criticality codes = Boltzmann equation + population control
- ☐ Population control = Weight Watching techniques (i.e. splitting+roulette)

 played at end of cycles to ensure that N~cte

Can we build an equation for what MC criticality codes actually solve?

Fission/Capture vs Splitting/Russian Roulette

Probability for a given neutron to be splitted/captured depends on the overall # of neutrons

Pair interactions

But how many neutrons do we remove/split at the end of each cycle and how to select them?

renormalization rate depends on time and N!

$$\lambda(t)f(N)N$$
 $(N-1)N$
 \aleph

Generalization # neutrons captured in $x \pm dx$ if k>1

$$\lambda(t) \int dy \ G(x,y,t)$$

Birch et al, Theoretical Population Biology, 70, 26-42 (2006)

- Combinatorial interactions!
 N² at first order (# pairs)
- ☐ Depends on the total mass N
- \Box Depends on the local mass N(x)

number of pairs

Diffusion with pair interactions

$$\partial_t \phi = D\nabla^2 \phi + (\beta - \gamma) \phi$$
+ pair interactions

$$\partial_t \phi = D \nabla^2 \phi + (\beta - \gamma) \ \phi + \lambda(t) \int dy \ G(x,y,t)$$
 number of pairs

$$G(x,y,t) = \Big[1+g(x,y,t)\Big]\phi(x)\phi(y)$$

$$g(x,y,t) \text{ spatial correlation function}$$

- "Hierarchy horror" (2d order moment pops back in the mean field equation!)
- ☐ Clustering = spatial correlations => Bias induced on the flux wrt pure diffusion

Small population size

$$\partial_t \phi = D\nabla^2 \phi + (\beta - \gamma) \phi + \left(\frac{-\beta + \gamma - D \partial_x \phi(x, t) \big|_{x = \pm L}}{\int_{-L}^{+L} dx \int_{-L}^{+L} dx \phi(x, t)^2} \right) \phi(x, t)^2$$

- Non-linear equation with $\,\phi^2\,$ term
- Can be simplified under some assumptions —

Fisher, Ann. Eugenics 7:353-369 (1937)

$$\partial_t \phi = D\nabla^2 \phi + (\beta - \gamma) \phi (1 - \phi)$$

$$\phi(x,t) = \frac{1}{\left(1 + C \exp^{\pm\frac{1}{6}\sqrt{6(\beta-\gamma)}x - \frac{5}{6}(\beta-\gamma)t}\right)^2} \left| \begin{array}{c} \text{Dumonteil et al, Nuc. Eng. Tech.,} \\ \text{10.1016/j.net.2017.07.011 (2017)} \end{array} \right|$$

- ☐ F-KPP equation with traveling waves solutions
- Counter-reaction depending on the sign of $1-\phi$

Traveling wave & solitons

- ☐ Fux profile => comes from the averaging through time of the cluster displacement
- Connection between clustering & solitons
 - Clustering typical of branching processes
 - Solitons typical of non-linear equations
- Qualitative & Quantitative scheme to explain under-sampling biases on local tallies

Back to the under-sampling bias

- ☐ Under-sampling bias due to combination between clustering + population control + bc
- ☐ Parameters controlling the amplitude of the under-sampling bias are linked to the spatial correlation function:

$$|g_c(x_i, x_j, t)| \leq \frac{\lambda \nu_2}{N} \frac{2}{3} \frac{L^2}{D}$$

De Mulatier et al, J. Stat. Mech., 15, P08021, 1742-5468 (2015)

- Total reaction rate
- ☐ Typical size of the system
- Diffusion coefficient
- ☐ Second moment of the descending factorial of p(z)

Population control

- \square N has to be kept constant : $\int_{-L}^{L} dx \; \phi(x,t) = 1$
- $lue{}$ λ depends on time!
- $\hfill \square$ Injecting the normalization relation in our equation, we can calculate $\lambda(t)$

$$\lambda(t) = \frac{-\beta + \gamma - D \int_{-L}^{L} dx \, \nabla^{2} \phi(x, t)}{\int_{-L}^{L} dx \, \int_{-L}^{L} dy \, G(x, y, t)}$$

Newman et al, Phys. Rev. Lett., 92, 228103 (2004)

What equation do MC codes solve?

$$\lambda(t) = \frac{-\beta + \gamma - D \int_{-L}^{L} dx \, \nabla^{2} \phi(x, t)}{\int_{-L}^{L} dx \, \int_{-L}^{L} dy \, G(x, y, t)}$$

Probability that one neutron in x is captured

$$\partial_t \phi = D\nabla^2 \phi + (\beta - \gamma) \phi + \lambda(t) \int_{-L}^{L} dy \left(1 + g(x, y, t)\right) \phi(y, t) \phi(x, t)$$

$$g(x,y,t) \to 0$$

Large population size

Flux factorized out of the integral

$$g(x,y,t) \to g_N^\infty(x,y) >> 1$$

De Mulatier et al, J. Stat. Mech., 15, P08021, 1742-5468 (2015)

Small population size

Large population size

$$\nabla^2 \phi - \left(\int_{-L}^{L} dx \ \nabla^2 \phi(x) \right) \ \phi = 0$$

$$\partial_x \phi(x)\big|_{x=\pm L}$$

Neumann/Reflective bc $\nabla^2 \phi = 0$ ———

Dirichlet/Absorbing bc $\nabla^2 \phi + \frac{\pi^2}{2L^2} \phi = 0 \rightarrow$

Experimental design

In more details

- Size of the reactor (the bigger, the better) => control rod insertion matters
- Power of the reactor (the lower, the better) => ideally different run at different power. Ability to differentiate the power "signal" (fission chains) and the following "noise" sources:
 - (alpha,n) reactions have to be simulated
 - Spontaneous fission level has to be simulated
 - Inhibition of triggering sources as much as possible (PuBe)
- Define the time gate width (analysis) to reveal the non-Poissonian effects
- Spatial extension of the measurement => detector with a spatial resolution over more than few 10 cm, or at least being able to move the detector

MORET Simulations to design the experiment

- ☐ MORET5 code with all Random Noise options activated:
 - Data library: Endfb71
 - ☐ Fission sampling:
 - ✓ Freya
 - ✓ discrete Zucker and Holden tabulated

 - ✓ Only Spontaneous fissions
- Highly parallel simulations:
 - ☐ Simulated signal = 1000 s (prompt+delayed)
 - Number of independent simulations = 330
 - Number of neutrons per simulation = 2.4 10⁴

Excellent reactivity: Rho = -4 pcm

Up to 10 mW of simulated power!

Final rho

RPI Measurements 2017: Neutron clustering

Featuring

IRSN: Eric Dumonteil, Wilfried Monange LANL: Rian Bahran, Jesson Hutchinson, Geordy McKenzie, Mark Nelson

RPI: Peter Caracappa, Nick Thompson,

Glenn Winters

Surprise #1
Hotel View And Rendering

Surprise #2 De Gaulle

IRSN LANL & RPI

Good moments

Beautiful RCF outside views

Rian's

mine

Clustering in mathematics

Dawson, D.A., 1972. Z. Wahrsch. Verw. Gebiete 40, 125. Cox, J.T., Griffeath, D., 1985. Annals Prob. 13, 1108.

References

Theoretical modeling

Dumonteil, E. et al, 2014, Annals of Nuclear Energy 63, 612-618.

Clustering in biology

Young, W.R., et al, 2001. Nature, 412, 328. Houchmandzadeh, B., 2002. Phys. Rev. E 66, 052902.

Houchmandzadeh, B., 2008. Phys. Rev. Lett. 101, 078103. Houchmandzadeh, B., 2009. Phys. Rev. E 80, 051920.

[Dumonteil, E., Courau, T., 2010. Nuclear Technology 172, 120.]

Observation of clusters in MC criticality simulations

Zoia, A. et al, Physical Review E, 90, 042118 (2014). —— Confined geometries

De Mulatier et al, J. Stat. Mech., 15, P08021, 1742-5468 (2015) — Population control

Nowak et al, Ann. Nuc. Ener. 94, 856-868 (2015) — Consequences on MC criticality source convergence (with MIT)

Houchmandzadeh et al, Phys. Rev. E 92 (5), 052114 (2015) — Effects of delayed neutrons

Dumonteil et al, Nuclear Energy Agency of the OECD, Paris (to be published) -> OECD/NEA report

Dumonteil et al, Nuc. Eng. Tech., 10.1016/j.net.2017.07.011 (2017)

Traveling waves and biases (Jeju best papers)

Sutton, T., Mittal, A., Proceedings of M&C 2017 (Jeju) - cycles/time (Jeju best papers)